Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
BMC Neurosci ; 25(1): 11, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438964

RESUMO

BACKGROUND: Parkinson disease (PD) is the fastest growing neurodegenerative disease. The molecular pathology of PD in the prodromal phase is poorly understood; as such, there are no specific prognostic or diagnostic tests. A validated Pink1 genetic knockout rat was used to model early-onset and progressive PD. Male Pink1-/- rats exhibit progressive declines in ultrasonic vocalizations as well as hindlimb and forelimb motor deficits by mid-to-late adulthood. Previous RNA-sequencing work identified upregulation of genes involved in disease pathways and inflammation within the brainstem and vocal fold muscle. The purpose of this study was to identify gene pathways within the whole blood of young Pink1-/- rats (3 months of age) and to link gene expression to early acoustical changes. To accomplish this, limb motor testing (open field and cylinder tests) and ultrasonic vocalization data were collected, immediately followed by the collection of whole blood and RNA extraction. Illumina® Total RNA-Seq TruSeq platform was used to profile differential expression of genes. Statistically significant genes were identified and Weighted Gene Co-expression Network Analysis was used to construct co-expression networks and modules from the whole blood gene expression dataset as well as the open field, cylinder, and USV acoustical dataset. ENRICHR was used to identify the top up-regulated biological pathways. RESULTS: The data suggest that inflammation and interferon signaling upregulation in the whole blood is present during early PD. We also identified genes involved in the dysregulation of ribosomal protein and RNA processing gene expression as well as prion protein gene expression. CONCLUSIONS: These data identified several potential blood biomarkers and pathways that may be linked to anxiety and vocalization acoustic parameters and are key candidates for future drug-repurposing work and comparison to human datasets.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Adulto , Animais , Humanos , Masculino , Ratos , Ansiedade , Inflamação/genética , Doença de Parkinson/genética , RNA
2.
PLoS One ; 19(1): e0291995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236817

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disorder with both genetic and non-genetic causes. Animal research models are available for a multitude of diseases and conditions affecting the central nervous system (CNS), and large-scale CNS gene expression data exist for many of these. Although there are several models specifically for AD, each recapitulates different aspects of the human disease. In this study we evaluate over 500 animal models to identify those with CNS gene expression patterns matching human AD datasets. Approaches included a hypergeometric based scoring system that rewards congruent gene expression patterns but penalizes discordant gene expression patterns. The top two models identified were APP/PS1 transgenic mice expressing mutant APP and PSEN1, and mice carrying a GFAP mutation that is causative of Alexander disease, a primary disorder of astrocytes in the CNS. The APP/PS1 and GFAP models both matched over 500 genes moving in the same direction as in human AD, and both had elevated GFAP expression and were highly congruent with one another. Also scoring highly were the 5XFAD model (with five mutations in APP and PSEN1) and mice carrying CK-p25, APP, and MAPT mutations. Animals with the APOE3 and 4 mutations combined with traumatic brain injury ranked highly. Bulbectomized rats scored high, suggesting anosmia could be causative of AD-like gene expression. Other matching models included the SOD1G93A strain and knockouts for SNORD116 (Prader-Willi mutation), GRID2, INSM1, XBP1, and CSTB. Many top models demonstrated increased expression of GFAP, and results were similar across multiple human AD datasets. Heatmap and Uniform Manifold Approximation Plot results were consistent with hypergeometric ranking. Finally, some gene manipulation models, including for TYROBP and ATG7, were identified with reversed AD patterns, suggesting possible neuroprotective effects. This study provides insight for the pathobiology of AD and the potential utility of available animal models.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Ratos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Camundongos Transgênicos , Mutação , Presenilina-1/genética , Proteínas Repressoras/genética
3.
Behav Brain Res ; 460: 114754, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37981125

RESUMO

Parkinson disease (PD) causes voice and swallow dysfunction even in early stages of the disease. Treatment of this dysfunction is limited, and the neuropathology underlying this dysfunction is poorly defined. Targeted exercise provides the greatest benefit for offsetting voice and swallow dysfunction, and previous data suggest the hypoglossal nucleus and noradrenergic-locus coeruleus (LC) may be involved in its early pathology. To investigate relationships between targeted exercise and neuropathology of voice and swallow dysfunction, we implemented a combined exercise paradigm that included tongue force and vocalization exercises early in the Pink1-/- rat model. We tested the hypotheses that (1) tongue and vocal exercise improves tongue force and timing behaviors and vocalization outcomes, and (2) exercise increases optical density of serotonin (5-HT) in the hypoglossal nucleus, and tyrosine hydroxylase immunoreactive (Th-ir) cell counts in the LC. At two months of age Pink1-/- rats were randomized to exercise or non-exercise treatment. Age-matched wildtype (WT) control rats were assigned to non-exercise treatment. Tongue force and timing behaviors and ultrasonic vocalizations were measured at baseline (two months) and final (four months) timepoints. Optical density of 5-HT in the hypoglossal nucleus and TH-ir cell counts in the LC were obtained. Pink1-/- rats produced greater tongue forces, faster tongue contraction, and higher-intensity vocalization following exercise. There were no differences in LC TH-ir. The non-exercised Pink1-/- group had reduced density of 5-HT in the hypoglossal nucleus compared to the WT control group. The changes to tongue function and vocalization after targeted exercise suggests exercise intervention may be beneficial in early PD.


Assuntos
Doença de Parkinson , Animais , Ratos , Terapia por Exercício , Serotonina , Língua , Ultrassom
4.
Res Sq ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37674708

RESUMO

Background: Parkinson disease (PD) is the fastest growing neurodegenerative disease. The molecular pathology of PD in the prodromal phase is poorly understood; as such, there are no specific prognostic or diagnostic tests. A validated Pink1 genetic knockout rat was used to model early-onset and progressive PD. Male Pink1-/- rats exhibit progressive declines in ultrasonic vocalizations as well as hindlimb and forelimb motor deficits by mid-to-late adulthood. Previous RNA-sequencing work identified upregulation of genes involved in disease pathways and inflammation within the brainstem and vocal fold muscle. The purpose of this study was to identify gene pathways within the whole blood of young Pink1-/- rats (3 months of age) and to link gene expression to early acoustical changes. To accomplish this, limb motor testing (open field and cylinder tests) and ultrasonic vocalization data were collected, immediately followed by the collection of whole blood and RNA extraction. Illumina® Total RNA-Seq TruSeq platform was used to profile differential expression of genes. Statistically significant genes were identified and Weighted Gene Co-expression Network Analysis was used to construct co-expression networks and modules from the whole blood gene expression dataset as well as the open field, cylinder, and USV acoustical dataset. ENRICHR was used to identify the top up-regulated biological pathways. Results: The data suggest that inflammation and interferon signaling upregulation in the whole blood is present during early PD. We also identified genes involved in the dysregulation of ribosomal protein and RNA processing gene expression as well as prion protein gene expression. Conclusions: These data identified several potential blood biomarkers and pathways that may be linked to anxiety and vocalization acoustic parameters and are key candidates for future drug-repurposing work and comparison to human datasets.

5.
Laryngoscope ; 133(12): 3412-3421, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37293988

RESUMO

OBJECTIVES AND HYPOTHESIS: Vocal dysfunction, including hypophonia, in Parkinson disease (PD) manifests in the prodromal period and significantly impacts an individual's quality of life. Data from human studies suggest that pathology leading to vocal deficits may be structurally related to the larynx and its function. The Pink1-/- rat is a translational model used to study pathogenesis in the context of early-stage mitochondrial dysfunction. The primary objective of this work was to identify differentially expressed genes in the thyroarytenoid muscle and examine the dysregulated biological pathways in the female rat. METHODS: RNA sequencing was used to determine thyroarytenoid (TA) muscle gene expression in adult female Pink1-/- rats compared with controls. A bioinformatic approach and the ENRICHR gene analysis tool were used to compare the sequencing dataset with biological pathways and processes, disease relationships, and drug-repurposing compounds. Weighted Gene Co-expression Network Analysis was used to construct biological network modules. The data were compared with a previously published dataset in male rats. RESULTS: Significant upregulated pathways in female Pink1-/- rats included fatty acid oxidation and muscle contraction, synaptic transmission, and neuromuscular processes. Downregulated pathways included anterograde transsynaptic signaling, chemical synaptic transmission, and ion release. Several drug treatment options including cetuximab, fluoxetine, and resveratrol are hypothesized to reverse observed genetic dysregulation. CONCLUSIONS: Data presented here are useful for identifying biological pathways that may underlie the mechanisms of peripheral dysfunction including neuromuscular synaptic transmission to the TA muscle. These experimental biomarkers have the potential to be targeted as sites for improving the treatment for hypophonia in early-stage PD. LEVEL OF EVIDENCE: NA Laryngoscope, 133:3412-3421, 2023.


Assuntos
Músculos Laríngeos , Doença de Parkinson , Humanos , Ratos , Animais , Masculino , Feminino , Qualidade de Vida , Estresse Oxidativo
6.
Dysphagia ; 38(5): 1382-1397, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36949296

RESUMO

Early motor and non-motor signs of Parkinson disease (PD) include dysphagia, gastrointestinal dysmotility, and constipation. However, because these often manifest prior to formal diagnosis, the study of PD-related swallow and GI dysfunction in early stages is difficult. To overcome this limitation, we used the Pink1-/- rat, a well-established early-onset genetic rat model of PD to assay swallowing and GI motility deficits. Thirty male rats were tested at 4 months (Pink1-/- = 15, wildtype (WT) control = 15) and 6 months (Pink1-/- = 7, WT = 6) of age; analogous to early-stage PD in humans. Videofluoroscopy of rats ingesting a peanut-butter-barium mixture was used to measure mastication rate and oropharyngeal and pharyngoesophageal bolus speeds. Abnormal swallowing behaviors were also quantified. A second experiment tracked barium contents through the stomach, small intestine, caecum, and colon at hours 0-6 post-barium gavage. Number and weight of fecal emissions over 24 h were also collected. Compared to WTs, Pink1-/- rats showed slower mastication rates, slower pharyngoesophageal bolus speeds, and more abnormal swallowing behaviors. Pink1-/- rats demonstrated significantly delayed motility through the caecum and colon. Pink1-/- rats also had significantly lower fecal pellet count and higher fecal pellet weight after 24 h at 6 months of age. Results demonstrate that swallowing dysfunction occurs early in Pink1-/- rats. Delayed transit to the colon and constipation-like signs are also evident in this model. The presence of these early swallowing and GI deficits in Pink1-/- rats are analogous to those observed in human PD.


Assuntos
Transtornos de Deglutição , Doença de Parkinson , Ratos , Humanos , Masculino , Animais , Doença de Parkinson/complicações , Deglutição , Bário , Transtornos de Deglutição/etiologia , Constipação Intestinal/complicações
7.
Behav Brain Res ; 437: 114157, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36241070

RESUMO

Vocal communication, cognition, and affective state are key features of sustained health and wellness, and because vocalizations are often socially-motivated, social experience likely plays a role in these behaviors. The monoaminergic systems of the ventral tegmental area (VTA) and the locus coeruleus (LC) are associated with social and reward processing, vocalization production, and neurotransmitter changes in response to environmental stressors. The effect of social isolation on these complex behaviors and the underlying neural mechanisms is relatively unknown. To add to this body of literature, we randomized adult male Long-Evans rats to control (housed with a cagemate) or isolated (housed individually) conditions and assayed ultrasonic vocalizations, cognition (novel object recognition test), anxiety (elevated plus maze) and anhedonia (sucrose preference test) at 2, 4, 6, 8, and 10 months of age. At 10 months, VTA and LC samples were assayed for dopamine, norepinephrine, and serotonin using high performance liquid chromatography. We tested the hypotheses that isolation 1) diminishes vocalizations and cognition, 2) increases anxiety and depression, and 3) increases levels of dopamine, norepinephrine, and serotonin in the VTA and LC. Results showed isolation significantly reduced vocalization tonality (signal-to-noise ratio) and increased maximum frequency. There were no significant findings for cognition, anxiety, or anhedonia. Dopamine and serotonin and their respective metabolites were significantly increased in the VTA in isolated rats. These findings suggest chronic changes to social condition such as isolation affects vocalization production and levels of VTA neurotransmitters.


Assuntos
Locus Cerúleo , Ultrassom , Animais , Masculino , Ratos , Anedonia , Cognição , Dopamina/metabolismo , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Ratos Long-Evans , Serotonina/metabolismo , Isolamento Social , Área Tegmentar Ventral , Vocalização Animal/fisiologia
8.
Front Behav Neurosci ; 16: 867958, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172466

RESUMO

Parkinson's disease (PD) is a progressive, degenerative disease that affects nearly 10 million people worldwide. Hallmark limb motor signs and dopamine depletion have been well studied; however, few studies evaluating early stage, prodromal biology exist. Pink1-/- rats, a rodent model of PD mitochondrial dysfunction, exhibit early stage behavioral deficits, including vocal communication and anxiety, that progress during mid-to-late adulthood (6-12 months of age). Yet, the biological pathways and mechanisms that lead to prodromal dysfunction are not well understood. This study investigated the Pink1-/- rat in young adulthood (2 months of age). Mixed sex groups of Pink1-/- rats and wildtype (WT) controls were assayed for limb motor, anxiety, and vocal motor behaviors. A customized NanoString CodeSet, based on genetic work in later adulthood, was used to probe for the up regulation of genes involved in disease pathways and inflammation within the brainstem and vocal fold muscle. In summary, the data show sex- and genotype-differences in limb motor, anxiety, and vocal motor behaviors. Specifically, female Pink1-/- rats demonstrate less anxiety-like behavior compared to male Pink1-/- rats and female rats show increased locomotor activity compared to male rats. Pink1-/- rats also demonstrate prodromal ultrasonic vocalization dysfunction across all acoustic parameters and sex differences were present for intensity (loudness) and peak frequency. These data demonstrate a difference in phenotype in the Pink1-/- model. Tuba1c transcript level was identified as a key marker negatively correlated to ultrasonic vocalization at 2 months of age. Identifying genes, such as Tuba1c, may help determine early predictors of PD pathology in the Pink1-/- rat and serve as targets for future drug therapy studies.

9.
Laryngoscope Investig Otolaryngol ; 7(4): 1018-1024, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36000048

RESUMO

Objective: Radiation therapy (RT) for head and neck cancer (HNC) can result in severe xerostomia, or the subjective feeling of dry mouth. Characterizing xerostomia is critical to designing future clinical trials investigating how to improve HNC patients' quality of life (QoL). Few studies have investigated the very late (>5 years post-RT) effects of RT for HNC. We undertook preliminary studies quantifying very late xerostomia. Methods: Six adults who underwent RT for HNC at least 5 years prior and reported xerostomia were enrolled. Five healthy adults without a self-reported history of HNC or xerostomia were enrolled as controls. All participants completed three validated surveys to measure xerostomia-related QoL. Salivary production rates were measured and compositional analysis of the saliva and oral microbiome was completed. Results: The QoL survey scores for the HNC participants were significantly worse as compared to the control participants. The HNC participants produced less unstimulated saliva (p = .02) but not less stimulated saliva. The median salivary mucin significantly higher in HNC participants than in control participants (p = .02). There was no significant difference between the pH, amylase, or total protein. Microbiome analysis revealed alpha diversity to be significantly lower in the HNC participants. Conclusion: In the survivors of HNC who suffer from late toxicities, multiple means of measuring toxicity may be useful. We found that in patients with radiation-induced xerostomia over 5 years after therapy, not only were the QoL surveys significantly worse, as expected, but other measurements such as mucin and oral microbiome diversity were also significantly different. Level of evidence: 3.

10.
Behav Brain Res ; 418: 113642, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34755639

RESUMO

Vocal deficits and anxiety are common, co-occurring, and interacting signs of Parkinson Disease (PD) that have a devastating impact on quality of life. Both manifest early in the disease process. Unlike hallmark motor signs of PD, neither respond adequately to dopamine replacement therapies, suggesting that their disease-specific mechanisms are at least partially extra-dopaminergic. Because noradrenergic dysfunction is also a defining feature of PD, especially early in the disease progression, drug therapies targeting norepinephrine are being trialed for treatment of motor and non-motor impairments in PD. Research assessing the effects of noradrenergic manipulation on anxiety and vocal impairment in PD, however, is sparse. In this pre-clinical study, we quantified the influence of pharmacologic manipulation of norepinephrine on vocal impairment and anxiety in Pink1-/- rats, a translational model of PD that demonstrates both vocal deficits and anxiety. Ultrasonic vocalization acoustics, anxiety behavior, and limb motor activity were tested twice for each rat: after injection of saline and after one of three drugs. We hypothesized that norepinephrine reuptake inhibitors (atomoxetine and reboxetine) and a ß receptor antagonist (propranolol) would decrease vocal impairment and anxiety compared to saline, without affecting spontaneous motor activity. Our results demonstrated that atomoxetine and reboxetine decreased anxiety behavior. Atomoxetine also modulated ultrasonic vocalization acoustics, including an increase in vocal intensity, which is almost always reduced in animal models and patients with PD. Propranolol did not affect anxiety or vocalization. Drug condition did not influence spontaneous motor activity. These studies demonstrate relationships among vocal impairment, anxiety, and noradrenergic systems in the Pink1-/- rat model of PD.


Assuntos
Ansiedade , Norepinefrina/farmacologia , Doença de Parkinson/fisiopatologia , Vocalização Animal/efeitos dos fármacos , Inibidores da Captação Adrenérgica/farmacologia , Animais , Cloridrato de Atomoxetina/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Proteínas Quinases/genética , Ratos , Ratos Long-Evans , Reboxetina/farmacologia
11.
Behav Neurosci ; 136(1): 72-83, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34618494

RESUMO

Long-term social bonds are critical for survival and reproductive success in many species. Although courtship and pair-bond formation are relatively well studied, much less is known about the neural regulation of behaviors that occur after pair bonding that reinforce the bond and contribute to reproductive success. Dopamine and opioids in the nucleus accumbens (NAc) alter motivational state and reward by binding to receptor subtypes that engage distinct and opposing second messenger systems, and there is evidence that receptor ratios may influence social behavior. We used quantitative real-time PCR to explore relationships between messenger RNA ratios for dopamine D1 and D2 receptors (D1:D2) and mu and kappa opioid receptors (MOR:KOR) in NAc and behaviors implicated in reproductive investment and pair-bond maintenance in established male-female zebra finch pairs. In males, D1:D2 expression in NAc related negatively, whereas MOR:KOR related positively, to undirected song production. D1:D2 receptors also related positively to physical contact with a female. For females, D1:D2 expression was lower in females exposed to high compared to low rates of the partner's undirected song, and MOR:KOR expression in females related positively to undirected song exposure and allopreening. Analyses of single genes did not yield the same results. These findings suggest that the ratio of D1 to D2 and MOR to KOR receptor signaling in NAc causes differences in behavior or that behavior (or the partner's behavior) causes receptor ratio changes to modulate behaviors that maintain pair bonds and promote reproductive investment. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Tentilhões , Núcleo Accumbens , Animais , Dopamina/metabolismo , Feminino , Tentilhões/metabolismo , Masculino , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores Opioides/metabolismo
12.
Brain Sci ; 11(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356159

RESUMO

Parkinson's disease (PD) is a progressive, degenerative disorder that affects 10 million people worldwide. More than 90% of individuals with PD develop hypokinetic dysarthria, a motor speech disorder that impairs vocal communication and quality of life. Despite the prevalence of vocal deficits in this population, very little is known about the pathological mechanisms underlying this aspect of disease. As such, effective treatment options are limited. Rat models have provided unique insights into the disease-specific mechanisms of vocal deficits in PD. This review summarizes recent studies investigating vocal deficits in 6-hydroxydopamine (6-OHDA), alpha-synuclein overexpression, DJ1-/-, and Pink1-/- rat models of PD. Model-specific changes to rat ultrasonic vocalization (USV), and the effects of exercise and pharmacologic interventions on USV production in these models are discussed.

13.
Behav Brain Res ; 414: 113514, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34358571

RESUMO

Vocal communication impairment and anxiety are co-occurring and interacting signs of Parkinson Disease (PD) that are common, poorly understood, and under-treated. Both vocal communication and anxiety are influenced by the noradrenergic system. In light of this shared neural substrate and considering that noradrenergic dysfunction is a defining characteristic of PD, tandem investigation of vocal impairment and anxiety in PD relative to noradrenergic mechanisms is likely to yield insights into the underlying disease-specific causes of these impairments. In order to address this gap in knowledge, we assessed vocal impairment and anxiety behavior relative to brainstem noradrenergic markers in a genetic rat model of early-onset PD (Pink1-/-) and wild type controls (WT). We hypothesized that 1) brainstem noradrenergic markers would be disrupted in Pink1-/-, and 2) brainstem noradrenergic markers would be associated with vocal acoustic changes and anxiety level. Rats underwent testing of ultrasonic vocalization and anxiety (elevated plus maze) at 4, 8, and 12 months of age. At 12 months, brainstem norepinephrine markers were quantified with immunohistochemistry. Results demonstrated that vocal impairment and anxiety were increased in Pink1-/- rats, and increased anxiety was associated with greater vocal deficit in this model of PD. Further, brainstem noradrenergic markers including TH and α1 adrenoreceptor immunoreactivity in the locus coeruleus, and ß1 adrenoreceptor immunoreactivity in vagal nuclei differed by genotype, and were associated with vocalization and anxiety behavior. These findings demonstrate statistically significant relationships among vocal impairment, anxiety, and brainstem norepinephrine in the Pink1-/- rat model of PD.


Assuntos
Ansiedade , Tronco Encefálico/metabolismo , Norepinefrina/metabolismo , Doença de Parkinson , Distúrbios da Fala , Vocalização Animal/fisiologia , Animais , Ansiedade/etiologia , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Modelos Animais de Doenças , Masculino , Doença de Parkinson/complicações , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Ratos , Ratos Transgênicos , Distúrbios da Fala/etiologia , Distúrbios da Fala/metabolismo , Distúrbios da Fala/fisiopatologia
14.
Laryngoscope ; 131(12): E2874-E2879, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34057223

RESUMO

OBJECTIVES/HYPOTHESIS: Voice disorders in Parkinson's disease (PD) are early-onset, manifest in the preclinical stages of the disease, and negatively impact quality of life. The complete loss of function in the PTEN-induced kinase 1 gene (Pink1) causes a genetic form of early-onset, autosomal recessive PD. Modeled after the human inherited mutation, the Pink1-/- rat demonstrates significant cranial sensorimotor dysfunction including declines in ultrasonic vocalizations. However, the underlying genetics of the vocal fold thyroarytenoid (TA) muscle that may contribute to vocal deficits has not been studied. The aim of this study was to identify differentially expressed genes in the TA muscle of 8-month-old male Pink1-/- rats compared to wildtype controls. STUDY DESIGN: Animal experiment with control. METHODS: High throughput RNA sequencing was used to examine TA muscle gene expression in adult male Pink1-/- rats and wildtype controls. Weighted Gene Co-expression Network Analysis was used to construct co-expression modules to identify biological networks, including where Pink1 was a central node. The ENRICHR tool was used to compare this gene set to existing human gene databases. RESULTS: We identified 134 annotated differentially expressed genes (P < .05 cutoff) and observed enrichment in the following biological pathways: Parkinson's disease (Casp7, Pink1); Parkin-Ubiquitin proteasome degradation (Psmd12, Psmd7); MAPK signaling (Casp7, Ppm1b, Ppp3r1); and inflammatory TNF-α, Nf-κB Signaling (Casp7, Psmd12, Psmd7, Cdc34, Bcl7a, Peg3). CONCLUSIONS: Genes and pathways identified here may be useful for evaluating the specific mechanisms of peripheral dysfunction including within the laryngeal muscle and have potential to be used as experimental biomarkers for treatment development. LEVEL OF EVIDENCE: NA Laryngoscope, 131:E2874-E2879, 2021.


Assuntos
Músculos Laríngeos/patologia , Doença de Parkinson/complicações , Proteínas Quinases/genética , Prega Vocal/patologia , Distúrbios da Voz/genética , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Mutação com Perda de Função , Masculino , Doença de Parkinson/genética , Qualidade de Vida , Ratos , Ratos Transgênicos , Vocalização Animal , Distúrbios da Voz/patologia
16.
PLoS One ; 15(10): e0240366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33064741

RESUMO

Parkinson disease (PD) is associated with speech and swallowing difficulties likely due to pathology in widespread brain and nervous system regions. In post-mortem studies of PD, pathology has been reported in pharyngeal and laryngeal nerves and muscles. However, it is unknown whether PD is associated with neuromuscular changes in the tongue. Prior work in a rat model of PD (Pink1-/-) showed oromotor and swallowing deficits in the premanifest stage which suggested sensorimotor impairments of these functions. The present study tested the hypothesis that Pink1-/- rats show altered tongue function coinciding with neuromuscular differences within tongue muscles compared to wildtype (WT). Male Pink1-/- and WT rats underwent behavioral tongue function assays at 4 and 6 months of age (n = 7-8 rats per group), which are time points early in the disease. At 6 months, genioglossus (GG) and styloglossus (SG) muscles were analyzed for myosin heavy chain isoforms (MyHC), α-synuclein levels, myofiber size, centrally nucleated myofibers, and neuromuscular junction (NMJ) innervation. Pink1-/- showed greater tongue press force variability, and greater tongue press forces and rates as compared to WT. Additionally, Pink1-/- showed relative increases of MyHC 2a in SG, but typical MyHC profiles in GG. Western blots revealed Pink1-/- had more α-synuclein protein than WT in GG, but not in SG. There were no differences between Pink1-/- and WT in myofiber size, centrally-nucleated myofibers, or NMJ innervation. α-synuclein protein was observed in nerves, NMJ, and vessels in both genotypes. Findings at these early disease stages suggest small changes or no changes in several peripheral biological measures, and intact motor innervation of tongue muscles. Future work should evaluate these measures at later disease stages to determine when robust pathological peripheral change contributes to functional change, and what CNS deficits cause behavioral changes. Understanding how PD affects central and peripheral mechanisms will help determine therapy targets for speech and swallowing disorders.


Assuntos
Músculos Palatinos/fisiopatologia , Doença de Parkinson/genética , Proteínas Quinases/genética , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Masculino , Cadeias Pesadas de Miosina/metabolismo , Músculos Palatinos/metabolismo , Doença de Parkinson/fisiopatologia , Ratos , Língua/metabolismo , Língua/fisiopatologia
17.
Exp Gerontol ; 142: 111104, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33017670

RESUMO

Degeneration of tongue muscles with aging may contribute to swallowing deficits observed in elderly people. However, the capacity for tongue muscle stem cells (SCs) to regenerate and repair the aged tongue and improve tongue strength following tongue exercise (a current clinical treatment) has never been examined. We found that the expression of regenerative, myogenic markers were impaired with age and may be related to increased expression of senescent marker p16INK4a. Tongue strength increased in young adult and old rats following exercise and was related to the expression of Pax7, MyoD, myogenin, and p16INK4a. Our study also suggests that strengthening of tongue muscles via clinical rehabilitation strategies also increased the expression of SC regenerative markers in the tongue throughout the exercise duration.


Assuntos
Deglutição , Língua , Idoso , Envelhecimento , Animais , Terapia por Exercício , Humanos , Músculo Esquelético , Ratos
18.
BMC Genomics ; 21(1): 625, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32942992

RESUMO

BACKGROUND: Parkinson's disease (PD) is a degenerative disease with early-stage pathology hypothesized to manifest in brainstem regions. Vocal deficits, including soft, monotone speech, result in significant clinical and quality of life issues and are present in 90% of PD patients; yet the underlying pathology mediating these significant voice deficits is unknown. The Pink1-/- rat is a valid model of early-onset PD that presents with analogous vocal communication deficits. Previous work shows abnormal α-synuclein protein aggregation in the periaqueductal gray (PAG), a brain region critical and necessary to the modulation of mammalian vocal behavior. In this study, we used high-throughput RNA sequencing to examine gene expression within the PAG of both male and female Pink1-/- rats as compared to age-matched wildtype controls. We used a bioinformatic approach to (1) test the hypothesis that loss of Pink1 in the PAG will influence the differential expression of genes that interact with Pink1, (2) highlight other key genes that relate to this type of Mendelian PD, and (3) catalog molecular targets that may be important for the production of rat vocalizations. RESULTS: Knockout of the Pink1 gene resulted in differentially expressed genes for both male and female rats that also mapped to human PD datasets. Pathway analysis highlighted several significant metabolic pathways. Weighted gene co-expression network analysis (WGCNA) was used to identify gene nodes and their interactions in (A) males, (B) females, and (C) combined-sexes datasets. For each analysis, within the module containing the Pink1 gene, Pink1 itself was the central node with the highest number of interactions with other genes including solute carriers, glutamate metabotropic receptors, and genes associated with protein localization. Strong connections between Pink1 and Krt2 and Hfe were found in both males and female datasets. In females a number of modules were significantly correlated with vocalization traits. CONCLUSIONS: Overall, this work supports the premise that gene expression changes in the PAG may contribute to the vocal deficits observed in this PD rat model. Additionally, this dataset identifies genes that represent new therapeutic targets for PD voice disorders.


Assuntos
Redes Reguladoras de Genes , Doença de Parkinson/genética , Substância Cinzenta Periaquedutal/metabolismo , Transcriptoma , Vocalização Animal , Animais , Feminino , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Queratina-2/genética , Queratina-2/metabolismo , Masculino , Doença de Parkinson/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Proteínas Quinases/genética , Ratos , Ratos Long-Evans
19.
J Parkinsons Dis ; 10(2): 489-504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32065805

RESUMO

BACKGROUND: Individuals with Parkinson's disease (PD) experience significant vocal communication deficits. Findings in the Pink1-/- rat model of early-onset PD suggest that ultrasonic vocal communication is impaired early, progressively worsens prior to nigrostriatal dopamine depletion, and is associated with loss of locus coeruleus neurons, brainstem α-synuclein, and larynx pathology. Individuals with PD also demonstrate ventilatory deficits and altered sensory processing, which may contribute to vocal deficits. OBJECTIVE: The central hypothesis is that ventilatory and sensory deficits are present in the early disease stages when limb and vocal motor deficits also present. METHODS: Pink1-/- rats were compared to wildtype (WT) controls at longitudinal timepoints. Whole-body flow through plethysmography was used to measure ventilation in the following conditions: baseline, hypoxia, and maximal chemoreceptor stimulation. Plantar thermal nociception, and as a follow up to previous work, limb gait and vocalization were analyzed. Serotonin density (5-HT) in the dorsal raphe was quantified post-mortem. RESULTS: Baseline breathing frequencies were consistently higher in Pink1-/- rats at all time points. In hypoxic conditions, there were no significant changes between genotypes. With hypercapnia, Pink1-/- rats had decreased breathing frequencies with age. Thermal withdrawal latencies were significantly faster in Pink1-/- compared with WT rats across time. No differences in 5-HT were found between genotypes. Vocal peak frequency was negatively correlated to tidal volume and minute ventilation in Pink1-/- rats. CONCLUSION: This work suggests that abnormal nociceptive responses in Pink1-/- rats and ventilatory abnormalities may be associated with abnormal sensorimotor processing to chemosensory stimuli during disease manifestation.


Assuntos
Nociceptividade/fisiologia , Doença de Parkinson/fisiopatologia , Transtornos da Percepção/fisiopatologia , Proteínas Quinases , Transtornos Respiratórios/fisiopatologia , Sensação Térmica/fisiologia , Vocalização Animal/fisiologia , Animais , Modelos Animais de Doenças , Doença de Parkinson/complicações , Transtornos da Percepção/etiologia , Ratos , Transtornos Respiratórios/etiologia
20.
Behav Brain Res ; 377: 112175, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31542395

RESUMO

Parkinson disease (PD) is a progressive, neurological disease that affects millions of individuals worldwide. Although instability, rigidity, tremor, and bradykinesia are considered hallmark motor signs of the disease, these are not apparent until mid-to-late stage. In addition to limb motor impairment, individuals with PD also exhibit early-onset speech dysfunction and reduced vocal intelligibility as well as anhedonia and anxiety. Many of these clinical signs vary according to sex in humans with PD. In this study, a translational genetic rat model of early-onset PD (Pink1-/-) was used to address significant gaps in knowledge concerning sex-specific characteristics of limb sensorimotor deficits, vocal motor dysfunction, and changes in affective state. Traditional behavioral tests of limb function, ultrasonic vocalization, anxiety, and anhedonia in the Pink1-/- female rat and wildtype controls were used to test the hypothesis that behavioral performance would significantly differ between genotypes, and that these differences would increase with disease progression (age of the rat). Results demonstrate that Pink1-/- female rats do not exhibit limb sensorimotor deficits but do have significantly reduced intensity (loudness) of vocalizations, and present with anhedonia and anxiety by 8 months of age. Consistent with an early-disease model, Pink1-/- female rats do not exhibit significant decreases in nigrostriatal catecholamines/metabolites, as measured by HPLC. These results are significant in expanding knowledge of early-onset deficits in the female Pink1-/- genetic rat model of PD.


Assuntos
Anedonia/fisiologia , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Catecolaminas/metabolismo , Modelos Animais de Doenças , Ciclo Estral/fisiologia , Atividade Motora/fisiologia , Doença de Parkinson , Proteínas Quinases , Caracteres Sexuais , Fatores Etários , Animais , Corpo Estriado/metabolismo , Feminino , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Proteínas Quinases/genética , Ratos , Ratos Long-Evans , Ratos Transgênicos , Substância Negra/metabolismo , Ondas Ultrassônicas , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...